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Abstract. We investigate the evolution of cooperative behaviors of small-world networking agents in a
snowdrift game mode, where two agents (nodes) are connected with probability depending on their spatial
Euclidean lattice distance in the power-law form controlled by an exponent «. Extensive numerical simula-
tions indicate that the game dynamics crucially depends on the spatial topological structure of underlying
networks with different values of the exponent «. Especially, in the distance-independent case of a = 0,
the small-world connectivity pattern contributes to an enhancement of cooperation compared with that
in regular lattices, even for the case of having a high cost-to-benefit ratio r. However, with the increment
of & > 0, when r > 0.4, the spatial distance-dependent small-world (SDSW) structure tends to inhibit the

evolution of cooperation in the snowdrift game.

PACS. 02.50.Le Decision theory and game theory — 87.23.Kg Dynamics of evolution — 89.75.Fb Structures

and organization in complex systems

1 Introduction

Understanding the game mechanisms responsible for the
emergence and persistence of cooperative behaviors has
become one of the central problems in evolutionary biol-
ogy and socioeconomics [1,2]. Game theory [3] and the
theory of evolutionary games [4,5] provide a sufficient
framework to model individual interactions. Especially,
the snowdrift game (SG) [6,7], an alternative to the pris-
oner’s dilemma game [8] for studying cooperation, has at-
tracted considerable interests.

The SG, also known as the Hawk-Dove game, is orig-
inally a two-agent symmetric game, in which each agent
can decide to take one of two strategies: cooperate (C)
or defect (D). There are four possible combinations: (C,
(), (C, D), (D, C), and (D, D) with their payoffs (R,R),
(S8,T), (T,S), and (P, P), respectively, satisfying the or-
dering condition 7' > R > S > P. The best action of
one agent depends on his opponent: C is a better strategy
than D if his opponent plays D; on the other hand, if his
opponent plays C, then D is the best response. Consid-
ering now not just two agents but rather a large mixing
population of agents, the game finally leads to a mixed
evolutionarily stable state [9].

Several years later than the pioneering work of Nowak
and May [10], it has been argued that the embedment
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of spatial interactive structure significantly affects the co-
operative behaviors of the games. Recent studies of the
SG played on two-dimensional lattices have shown that,
the incorporation of spatial dimensional structure may in-
hibit cooperation [11], and the equilibrium proportion of
cooperators is less than that expected by the game with
replicator dynamics [12]. In a more recent work of the
SG on a two-dimensional lattice, however, Sysi-Aho et al.
proposed a different conclusion that, using a simple lo-
cal decision rule, cooperation persists through the whole
temptation parameter range [13]. The same results have
also been obtained by Santos et al. in the case of the SG
on scale-free networks, where they concluded that increas-
ing heterogeneity of the network favors the emergence of
cooperation [14,15]. The viewpoints that cooperation is
sometimes inhibited and sometimes enhanced are also ob-
served on several categories of complex networks rang-
ing from regular lattices, small-world networks to random
graphs, where the differences are due to different update
rules and network contacts [16].

In many biological and social systems, individuals
are often embedded in a Euclidean geographical space,
and the interactions among them usually depend on
their spatial distances. A typical example is neural net-
works in which spatial distances have great influences
on the communications between neural cells [17]. In re-
cent, years, spatial Euclidean small-world networks have



370
e 0.4
D P —&— a=0
30 0.3
a0 w02
10%& 0.1
oo oo
a5 . : i
0 o >
o 02 04 06 0B | 0 02 04 0B 08 1
p p

Fig. 1. The average path length L and the clustering coef-
ficient E as a function of the probability p for small-world
networks with a = 0. Each point represents an average value
over 100 runs simulated on 50 x 50 small-world networks.

attracted considerable interests, including but not lim-
ited to the navigability [18] and the nature of random
walks [19-21]. Moving to the SG, we are interested in
uncovering the dependence of cooperative behaviors on
the spatial Euclidean structure embedded in underlying
small-world networks. In this paper, a spatial distance-
dependent small-world (SDSW) network topology is in-
troduced to the SG, in which the length distribution of
shortcuts is not uniform, and two nodes are connected ac-
cording to their spatial lattice distance [22]. We try to
explore the cooperative dynamics of the SG whose agents
are in the spatial Euclidean situation.

2 SDSW network topology

The underlying SDSW network is constructed in a sim-
plified Euclidean space [22]. To each site of a regular two-
dimensional lattice, we assume it links to [ nearest neigh-
bors (the local contacts), where the constant [ > 0. For
a universal constant ¢ > 0, we add edges with probabil-
ity p from an arbitrary node u to other ¢ nodes (the long-
range contacts). Inspired by the Kleinberg small-world
model [18], we select node v as one of the endpoints of ¢
long-range connections of node u with the probability pro-
portional to [d(u, v)]~®, where d is the lattice distance be-
tween the two nodes and the exponent o > 0. Therefore,
when o = 0, one node’s long-range connections are chosen
with uniform probability independently of their positions
on the lattice. As a increases, the long-range connections
will be clustered in its vicinity and two distant nodes are
less likely to be connected due to the distance-dependent
cost of the edges. Such a graph has almost pgn? shortcuts
and an average degree (k) ~ [ + 2pq [23].

The exponent « has a strong impact on both local and
global properties of the resulting network. For simplicity,
we fix [ = ¢ = 4, i.e., each node has four nearest neighbors
and 4p long-range neighbors. We observe the average path
length L and the clustering coefficient E as functions of
the probability p for 50 x 50 small-world networks with
a = 0. We can see from Figure 1 that at first L drops
rapidly with the increase of p up to p ~ 0.2, at which point
(k) =~ 6, then keeps decreasing slowly with increased p.
However, E keeps close to zero as p varies, implying that
the network with @ = 0 has almost no local clustering
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Fig. 2. The average path length L and the clustering coeffi-
cient E as a function of the exponent o for small-world net-
works with p = 0.01,0.2,1. Each point represents an average
value over 100 runs simulated on 50 x 50 small-world networks.

property. For comparison, we plot L and E as functions
of a in Figure 2 for 50 x 50 small-world networks with
p = 0.01,0.2,1, respectively, where both L and E grow
linearly with the increment of «, indicating the sensitivity
of F with respect to «, i.e., the network becomes more
and more densely clustered, at the same time the average
path length of the network also becomes larger.

3 Spatial snowdrift game model

Following reference [11], we rescale the game such that it
depends on a single parameter. In the model, we make
T=b>1,R=b—-1/2,S=b—-1and P = 0, such
that the cost-to-benefit ratio of mutual cooperation can
be written as 7 = 1/(2b— 1), where 0 < r < 1.

We define that a round of play consists of the en-
counters of all pairs of individual x and its connected
neighbor y, the payoff obtained from game interactions
being stored as P,. The payoffs earned by the agents
are not accumulated from round to round. Whenever
a site x is updated, a neighbor y is drawn at random
among all k;, neighbors; whenever P, > F,, the cho-
sen neighbor takes over site x with probability given
by (P, — P;)/(ks(T — P)), where ks = max{k,, k,}. In
the process of evolution, updating is synchronous where
all sites are updated simultaneously through competition
with a randomly chosen neighbor.

4 Simulation results

After extensive numerical simulations, the instance of
50 x 50 small-world networks is selected as the illustra-
tion in the following®. We still take [ = ¢ = 4. The spatial
networks are initialized randomly so that each node con-
tains a cooperator or defector with the equal probability.
Equilibrium frequencies of cooperation are obtained by
averaging over 1000 generations after a transient time of
10000 generations. All data are averaged over 100 groups
of network realizations. The network connections, once

! We have done extensive numerical simulations under differ-
ent system sizes, and found that all the qualitative conclusions
of this paper still hold, which are independent of the system
size.
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Frequency of cooperation

Fig. 3. The time evolution of the frequency of cooperation
with the exponent a@ = 0. The upper curves are for r = 0.3
and the lower curves for 7 = 0.6. In both cases the probability
is varied as p = 0.01,0.1, 1. Each point represents an average
value over 100 runs simulated on 50 x 50 small-world networks.

generated, remain static throughout the evolution of the
game.

First, we explore the effect of distance-independent
small-world network mechanism with the exponent a = 0
on the generic behaviors of the game. Figure 3 shows
the time evolution of the frequency of cooperation F, in
spatial populations for p = 0.01,0.1,1, and » = 0.3,0.6,
respectively. In all the studied cases, the cooperation fre-
quency F. turns out to converge quite rapidly to a con-
stant value without oscillations. We can see that, with
the same r, the stable frequencies with different p are
obviously distinguishable from each other, i.e., F, ~
0.65,0.82,0.75 for r = 0.3, p = 0.01,0.1,1 and F, ~
0.23,0.33,0.35 for r = 0.6, p = 0.01,0.1, 1, respectively,
implying that network topology significantly affects the
behaviors of cooperation at steady states.

Figure 4 shows the frequency of cooperation as a func-
tion of r in the SG on small-world networks with differ-
ent p = 0,0.01,0.1,0.5,1. We can see that the frequency
with the small-world topology (p > 0) is improved signif-
icantly compared with that of the regular lattice (p = 0).
Clearly, the major contribution to such an improvement
arises from the adding of shortcuts in the population struc-
ture (taking place with increasing p). Similar with that in
reference [11], the frequency of cooperation is higher than
the mean field result (the dotted line 1—r) for small r, spa-
tial structure favoring defectors for larger r. The threshold
above which the proportion of defectors is higher than the
mean filed result depends on the value of p. For large 7,
deviations from the mean field result are less pronounced
with the higher values of p.

We plot the frequency of cooperation as a function
of p for different r in Figure 5, since the small-world
probability is important for the evolution of cooperation.
Remarkably, we find that with the independence of 7,
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Fig. 4. Frequency of cooperation as a function of the cost-
to-benefit ratio r in the snowdrift game on small-world net-
works with the exponent o = 0 and the probability p =
0,0.01,0.1,0.5,1. Each point represents an average value over
100 runs simulated on 50 x 50 small-world networks.
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Fig. 5. (a—f) Frequency of cooperation as a function of the
probability p in the snowdrift game on small-world networks
with the exponent a = 0 and the cost-to-benefit ratio r =
0.3,0.4,0.5,0.6,0.7,0.8. Each point represents an average value
over 100 runs simulated on 50 x 50 small-world networks.
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the frequency keeps increasing with respect to the proba-
bility p up to p ~ 0.2, where the performance is already
greatly enhanced. This indicates that the overall incidence
of cooperators is sensitive to the average path length L,
which has decreased typically one order of magnitude from
its value at p = 0 as previously shown in Figure 1. For
r = 0.3 and r = 0.4, there exists a pronounced frequency
peak at p ~ 0.2, illustrating an optimal cooperation oc-
curs at this point. With the increment of r, the peak be-
comes more and more saturated, and no further quali-
tative changes take place for p > 0.2, owing to the fact
that L varies a little at this stage.

Now, we investigate how the exponent « in the SDSW
networks influences the evolution of cooperation. As de-
scribed above, the increment of o marks the onset of a
more rapid change of the clustering property and a larger
average path length. Only for small » (r < 0.3) is the pro-
portion of cooperators not affected by the changes of «a,
mainly due to the high benefit and low cost. However,
when r is larger, the spatial structure with increased o
affects the cooperative dynamics greatly. The frequency
of cooperation as a function of « is shown in Figure 6
for the SG with p = 0.01,0.2,1 and r = 0.3,0.6, respec-
tively. When r < 0.4, the benefit is lower but still relative
high, which leads to complex behaviors with different p.
A typical case is shown in the left panels of Figure 6 cor-
responding to r = 0.3, where as a grows from zero, the
equilibrium proportion of cooperators decreases for p = 1,
increases for p = 0.2, and remains almost unchanged for
p = 0.01. When r > 0.4, the benefit becomes less, and
the spatial clustered network makes cooperators be eas-
ily invaded by defectors, which favors defectors and tends
to inhibit cooperation. A typical example is shown in the
right panels of Figure 6 corresponding to r = 0.6, where
the results are essentially identical for p = 0.01,0.2,1,
respectively. We can observe that the equilibrium pro-
portion of cooperators drops with the increment of «,
where the long-distance connections become more and
more sparse, and short-distance connections become more
and more dense in the network, indicating long-distance
connectivity pattern benefits overall cooperation in this
high cost-to-benefit spatial situation. Our extensive simu-
lations with other population sizes also support this turn-
ing point of cooperation at » = 0.4, which is independent
of the population size.

5 Conclusion

In a summary, cooperative behaviors of the snowdrift
game are sensitive to the underlying spatial network
structures. In particular, when a = 0, the spatial distance-
independent small-world mechanism contributes to an
enhanced level of cooperation among the populations com-
pared with regular lattices, even with a very high cost-
to-benefit ratio. When a > 0, and r > 0.4, the SDSW
network structure tends to inhibit the evolution of coop-
eration in the snowdrift game.
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Fig. 6. Frequency of cooperation as a function of the expo-
nent « for the snowdrift game on small-world networks with
the probability p = 0.01,0.2,1 and the cost-to-benefit ratio
r = 0.3,0.6. (a—) correspond to r = 0.3 and (d—f) Corre-
spond to r = 0.6. Each point represents an average value over
100 runs simulated on 50 x 50 small-world networks.
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